ACUTE PAIN SECTION

Case Reports

Did Continuous Femoral and Sciatic Nerve Block Obscure the Diagnosis or Delay the Treatment of Acute Lower Leg Compartment Syndrome? A Case Report

M. Anthony Cometa, MD,* Andrea T. Esch, DO,* and André P. Boezaart, MD, PhD†

*Department of Anesthesiology, Division of Acute Pain Medicine and
†Department of Orthopedic Surgery and Rehabilitation, University of Florida College of Medicine, Gainesville, Florida, USA

Abstract

Objective. We report a case of acute lower extremity compartment syndrome that was diagnosed despite continuous regional analgesia with 0.2% ropivacaine via femoral and sciatic nerve catheters.

Setting. Academic tertiary care center.


Summary. A 15-year-old boy with adolescent Blount’s disease underwent elective distal femur and proximal tibia osteotomy with external fixation and stabilization of his right leg. The patient’s anesthetic and analgesic management included general anesthesia with adjunctive regional anesthesia via continuous femoral and sciatic nerve blocks with 0.2% ropivacaine—each block initially infused at 10 mL per hour. On the first postoperative day, the patient reported no pain (0/10 on the visual analog scale, where 0 is no pain and 10 is the worst pain imaginable). However, on the second postoperative day, the patient reported severe pain despite effective blocks and oral opioid analgesic modalities. Compartment syndrome was diagnosed and treated with decompressive fasciotomy; tissue loss resulted.

Conclusion. Despite concerns of masking pain that may be secondary to compartment syndrome, this case demonstrates that compartment syndrome can be diagnosed in the presence of effective regional anesthesia. Careful clinical evaluation coupled with a high index of suspicion is essential in the timely diagnosis and effective treatment of compartment syndrome.

Key Words. Continuous Nerve Block; Femoral Nerve Block; Sciatic Nerve Block; Compartment Syndrome; Complications

Introduction

Compartment syndrome occurs when pressure within a fixed anatomical closed space rises to levels where the perfusion gradient across tissue capillary beds are decreased resulting in nerve and tissue ischemia. If untreated or treated too late, this may lead to irreversible neuromuscular ischemic damage [1]. Compartment syndrome is a clinical diagnosis characterized by pain that is out of proportion to what is expected given the clinical situation and that is worsened by passive movement of muscles within the affected compartment. Compartment syndrome is a surgical emergency with definitive treatment requiring immediate fasciotomy to relieve the pressure within the affected compartment. Delay in the diagnosis and treatment can be detrimental, as irreversible tissue damage can occur as early as 4 hours after the onset of symptoms [2].

Regional anesthesia (RA) is regularly used to provide surgical anesthesia or as an adjunct to general anesthesia for the treatment of postoperative pain and to facilitate early mobilization [3]. RA and its efficacy for postoperative analgesia have raised concerns for the possible delay in...
diagnosis and treatment of compartment syndrome in
susceptible individuals [4], and two questions need to be
asked:

1. Does RA mask the chief symptom (severe pain out of
proportion to what is expected)?

2. Does RA obscure the clinical picture that may result in
the delay in the diagnosis and treatment of acute com-
partment syndrome?

This case report attempts to highlight these issues and
furthermore attempts to provide some answers to these
questions. By its very nature, compartment syndrome and
its diagnosis and treatment would be ethically impossible
to study prospectively because it cannot be reliably and
safely reproduced in human subjects. We therefore must
rely on anecdotal case reports to formulate and challenge
conventional thinking.

Case Report

We report a case involving a 15-year-old boy with Blount’s
disease (localized varus deformity of the leg), weighing
150 kg, who underwent elective distal femur and proximal
tibia osteotomy [5,6]. Before the operation, continuous
femoral and sciatic nerve blocks were placed to facilitate
continuous nerve block for perioperative analgesia using
techniques described previously [7], making use of Stimu-
Cath™ catheters (Arrow International, Reading, PA).

Blocks were placed preoperatively under mild sedation
with propofol, and the patient received 30 mL of 0.5%
ropivacaine through each of the catheters. He demon-
strated complete and appropriate sensory and motor
blockade. The operation proceeded without incident
under combined general and regional anesthesia, and in
the immediate postoperative period, the patient reported
no pain (0/10 on a visual analog scale [VAS], where
a number of 0 represents no pain and 10 represents the
worst pain imaginable). Both nerve blocks were main-
tained with infusions of 0.2% ropivacaine at a rate of
10 mL/h (Figure 1).

On the first postoperative day, the patient was evaluated
by the acute pain medicine service (APMS), and pain
throughout the evening was reported to have ranged from
0–3/10 on the VAS, with appropriate motor and sensory
blockade along the femoral and sciatic nerve distributions.
The infusion of 0.2% ropivacaine through the catheter to
the femoral nerve was decreased to 5 mL/h because of
weak quadriceps muscle function, while the infusion
through the catheter to the sciatic nerve remained
unchanged at 10 mL/h. The patient’s hamstring function
remained strong, and the pain was appropriately con-
trolled in both femoral and sciatic nerve distributions
(Figure 2).

On the second postoperative day, both of the continuous
block infusions were turned off at 06:00 in anticipation of
full return of sensation and subsequent catheter removal if
pain could be controlled with oral or intravenous analge-
sics only. The nurse caring for the patient documented
that the patient reported no pain (VAS = 0/10) for 2.5
hours following discontinuation of the infusions. Three
hours after the blocks had been turned off (09:00), the
primary orthopedic physicians evaluated the patient
and also documented no pain. During APMS rounds, 20
minutes later (3 hours and 20 minutes after discontinua-
tion of the block infusions at 06:00), the patient reported
severe excruciating antero-lateral pain (VAS = 10/10) in
the area where the external fixation device was placed. On
physical examination, the sensory and motor nervous
systems were fully intact. Given his complaint of severe
pain, the APMS physicians judged that the regional anes-
thesia therapy was discontinued prematurely and admin-
istered a bolus of 10 mL of 0.2% ropivacaine through
Continuous Nerve Block and Compartment Syndrome

Figure 2 Course of events on first postoperative day. APMS = acute pain medicine service; IV = intravenous; VAS = visual analog scale.

RA by continuous nerve block techniques is becoming an increasingly popular and common practice as an adjunct to general anesthesia for orthopedic surgical procedures [3,8–10]. More recently, the benefits of postoperative analgesia provided by lower extremity regional anesthesia is becoming more popular in the pediatric population [11]. However, given the efficacy of regional anesthesia, and especially continuous nerve blocks for providing postoperative analgesia, there are concerns of masking the pain that may be the earliest or only warning symptom of impending compartment syndrome. Corrective varus tibial osteotomy is well known to carry a high risk of compartment syndrome, and the use of RA for this surgery is controversial [5,6].

The maximum time to intervention that would prevent ischemic necrosis to an affected extremity is estimated to be 4–8 hours [2,12], and delays in diagnosis and
intervention with fasciotomy have resulted in poor outcomes, which include devastating outcomes such as amputation, multiorgan failure, and death [13]. A recent review of the literature, however, comparing multiple modes of analgesia, which included intravenous patient-controlled analgesia with opioids and RA, showed no convincing evidence that a delay of compartment syndrome diagnosis can be attributed to such analgesic modalities [14].

The anesthetic management of this patient included combined general anesthesia and RA techniques. Given the patient’s age and physical attributes that were concerning for possible respiratory obstruction, a full analgesic block using 0.5% ropivacaine to minimize the use of intraoperative systemic parenteral opioids was chosen. The patient did not require any parenteral opioid medication during his intraoperative and immediate PACU course on the initial day of the surgery. The patient started to experience severe pain that required further APMS intervention on the morning of the second postoperative day. That treatment provided adequate analgesia, but during the afternoon APMS evaluation on that day, the patient reported pain out of proportion to what one would expect with effective nerve blocks and both intravenous and oral opioids in place. Even the 10 mL boluses of 0.2% ropivacaine at that time through the nerve block catheters did not relieve the pain. The pain remained out of proportion to expectation, and physical examination showed excruciating crescendo pain upon passive stretching of the muscles. The presentation of crescendo pain with associated increased lower extremity edema should provoke a high index of suspicion for compartment syndrome. These findings seriously challenge the notion that regional anesthesia techniques might mask the telltale warning of pain caused by muscle ischemia of compartment syndrome.

The pathophysiology of ischemic muscular pain is complex and is mediated by chemical and inflammatory markers acting on nociceptors [15–19]. Myelinated A and unmyelinated C fibers are sensitive to an array of inflammatory and hormonal markers that result in nociceptor activation in injured tissue [15–17]. In ischemic tissue, however, it is postulated that bradykinin, serotonin, acetylcholine, adenosine, potassium ions, and hydrogen ions are some of the substances responsible for ischemic pain [16,17]. Tissue acidosis evidently initiates the pain pathway as increasing levels of hydrogen ion concentration may act on skeletal muscle nociceptors resulting in pain impulse transmission [18]. The hormonal markers of inflammation and injury are thought to undergo tachyphylaxis after nociceptor activation [15]; however, hydrogen ion excitation, in particular, produces non-adapting activation of nociceptors [15,19]. We therefore postulate that this patient’s affected compartments were ischemic such that nociceptor activation via hydrogen ion excitation was sufficient to render continuous regional anesthesia with 0.2% ropivacaine ineffective to provide analgesia.

We further propose that the analgesia achieved from our intervention with 0.2% ropivacaine on the morning of the second postoperative day sufficiently addressed the pain...
associated with the operative injury and inflammation to the surgical site, yet it was not sufficient to treat the ischemic pain. The exact time that the compartment syndrome actually started is impossible to determine for this particular patient, but we estimate that the ischemia associated with compartment syndrome started sometime between the morning and afternoon APMS evaluation—between 09:20 and 16:30. The patient underwent a decompressive fasciotomy of the superficial and deep posterior compartments and the anterior and lateral compartments of the leg within 5 hours of the diagnosis of compartment syndrome. In spite of this, the patient suffered tissue loss. The question that remains to be answered is whether the continued nerve blocks obscured the clinical presentation enough to delay surgery. Was the onset of the ischemic process in fact when we think it was?

Given the fact that the patient had no pain upon discontinuation of the continuous blocks but subsequently developed pain that was so severe that it was unresponsive to additional interventions with local anesthetic, we believe that our assumption of the approximate onset of the ischemic process was indeed correct. We do not believe that the blocks in any way obscured the diagnosis. In fact, our model of having APMS mandatory twice daily rounds on patients may have contributed to relatively early diagnosis.

The diagnosis of compartment syndrome is ultimately clinical—taking into consideration the classic signs and symptoms of pressure, pain, paresthesia, pallor, paresislessness, and paralysis. However, these signs and symptoms of compartment syndrome have been known to be unreliable [14]. The way that this patient presented included pressure, pain, and paresthesia. He continued to have capillary refill and strong bilateral lower extremity dorsalis pedis pulses, the loss of which is uncommon and a late clinical finding [20]. Adjunctive monitoring via compartment measurement monitoring has been reported in the literature [21,22]. Needle manometry was used to measure the intra-compartmental pressures of the patient’s affected extremity. Although the patient’s intra-compartmental pressures were elevated, it should be noted that this technique has been shown to be difficult to interpret and can have measurement inaccuracies [23]. Ultimately, this information should be used in the context of the entire clinical presentation. In patients at risk for compartment syndrome, careful monitoring with ongoing patient assessment, a high index of suspicion, and close communication among all individuals caring for the patient are essential [12].

Conclusion

The diagnosis of compartment syndrome can be difficult, especially in the pediatric population because children are often construed as being “immature” or not able to “handle” or communicate pain. Because compartment syndrome constitutes a surgical emergency, a high index of clinical suspicion is absolutely essential to make the diagnosis early. Further evaluation is critical when symptoms of ischemic pain are present. Time is of the essence when the diagnosis of compartment syndrome is made. The two pillars upon which the high clinical index of suspicion is based are pain out of proportion to expectations and crescendo pain upon passive stretching of the muscles in a particular compartment. Although there is no strong evidence in the literature that pain secondary to compartment syndrome can be masked by regional anesthesia, this current case report strongly suggests that ischemic pain due to compartment syndrome can be recognized early despite a known well-functioning regional anesthetic technique. Confirmatory tests in the form of repeat pressure measurements should probably be negated if a high index of suspicion exists, and pain “breaking through” an otherwise effective nerve block should immediately alert all members of the patient’s health care team to initiate immediate and emergent treatment.

Conflict of Interest

Dr. A P Boezaart invented the stimulating catheter and receives royalty payment from Arrow International for the sales of StimuCath.

References


Cometa et al.


